Practice 8

Obtaining, Evaluating, and Communicating Information

Being literate in science and engineering requires the ability to read and understand their literatures [34]. Science and engineering are ways of knowing that are represented and communicated by words, diagrams, charts, graphs, images, symbols, and mathematics [35]. Reading, interpreting, and producing text^{*} are fundamental practices of science in particular, and they constitute at least half of engineers' and scientists' total working time [36].

Even when students have developed grade-level-appropriate reading skills, reading in science is often challenging to students for three reasons. First, the jargon of science texts is essentially unfamiliar; together with their often extensive use of, for example, the passive voice and complex sentence structure, many find these texts inaccessible [37]. Second, science texts must be read so as to extract information accurately. Because the precise meaning of each word or clause may be important, such texts require a mode of reading that is quite different from reading a novel or even a newspaper. Third, science texts are multimodal [38], using a mix of words, diagrams, charts, symbols, and mathematics to communicate. Thus understanding science texts requires much more than simply knowing the meanings of technical terms.

Communicating in written or spoken form is another fundamental practice of science; it requires scientists to describe observations precisely, clarify their thinking, and justify their arguments. Because writing is one of the primary means of com-

^{*}The term "text" is used here to refer to any form of communication, from printed text to video productions.

municating in the scientific community, learning how to produce scientific texts is as essential to developing an understanding of science as learning how to draw is to appreciating the skill of the visual artist. Indeed, the new *Common Core State Standards for English Language Arts & Literacy in History/Social Studies, Science, and Technical Subjects* [39] recognize that reading and writing skills are essential to science; the formal inclusion in this framework of this science practice reinforces and expands on that view. Science simply cannot advance if scientists are unable to communicate their findings clearly and persuasively. Communication occurs in a variety of formal venues, including peer-reviewed journals, books, conference presentations, and carefully constructed websites; it occurs as well through informal means, such as discussions, email messages, phone calls, and blogs. New technologies have extended communicative practices, enabling multidisciplinary collaborations across the globe that place even more emphasis on reading and writing. Increasingly, too, scientists are required to engage in dialogues with lay audiences about their work, which requires especially good communication skills.

Being a critical consumer of science and the products of engineering, whether as a lay citizen or a practicing scientist or an engineer, also requires the ability to read or view reports about science in the press or on the Internet and to recognize the salient science, identify sources of error and methodological flaws, and distinguish observations from inferences, arguments from explanations, and claims from evidence. All of these are constructs learned from engaging in a critical discourse around texts.

Engineering proceeds in a similar manner because engineers need to communicate ideas and find and exchange information—for example, about new techniques or new uses of existing tools and materials. As in science, engineering communication involves not just written and spoken language; many engineering ideas are best communicated through sketches, diagrams, graphs, models, and products. Also in wide use are handbooks, specific to particular engineering fields, that provide detailed information, often in tabular form, on how best to formulate design solutions to commonly encountered engineering tasks. Knowing how to seek and use such informational resources is an important part of the engineer's skill set.

GOALS

By grade 12, students should be able to

• Use words, tables, diagrams, and graphs (whether in hard copy or electronically), as well as mathematical expressions, to communicate their understanding or to ask questions about a system under study.

Dimension 1: Scientific and Engineering Practices

- Read scientific and engineering text, including tables, diagrams, and graphs, commensurate with their scientific knowledge and explain the key ideas being communicated.
- Recognize the major features of scientific and engineering writing and speaking and be able to produce written and illustrated text or oral presentations that communicate their own ideas and accomplishments.
- Engage in a critical reading of primary scientific literature (adapted for classroom use) or of media reports of science and discuss the validity and reliability of the data, hypotheses, and conclusions.

PROGRESSION

Any education in science and engineering needs to develop students' ability to read and produce domain-specific text. As such, every science or engineering lesson is in part a language lesson, particularly reading and producing the genres of texts that are intrinsic to science and engineering.

Students need sustained practice and support to develop the ability to extract the meaning of scientific text from books, media reports, and other forms of scientific communication because the form of this text is initially unfamiliar expository rather than narrative, often linguistically dense, and reliant on precise logical flows. Students should be able to interpret meaning from text, to produce text in which written language and diagrams are used to express scientific ideas, and to engage in extended discussion about those ideas.

From the very start of their science education, students should be asked to engage in the communication of science, especially regarding the investigations they are conducting and the observations they are making. Careful description of observations and clear statement of ideas, with the ability to both refine a statement in response to questions and to ask questions of others to achieve clarification of what is being said begin at the earliest grades. Beginning in upper elementary and middle school, the ability to interpret written materials becomes more important. Early work on reading science texts should also include explicit instruction and practice in interpreting tables, diagrams, and charts and coordinating information conveyed by them with information in written text. Throughout their science education, students are continually introduced to new terms, and the meanings of those terms can be learned only through opportunities to use and apply them in their specific contexts. Not only must students learn technical terms but also more general academic language, such as "analyze" or "correlation," which are not part of most students' everyday vocabulary and thus need specific elaboration if they are to make sense of

76 A Framework for K-12 Science Education

From the very start of their science education, students should be asked to engage in the communication of science, especially regarding the investigations they are conducting and the observations they are making.

scientific text. It follows that to master the reading of scientific material, students need opportunities to engage with such text and to identify its major features; they cannot be expected simply to apply reading skills learned elsewhere to master this unfamiliar genre effectively.

Students should write accounts of their work, using journals to record observations, thoughts, ideas, and models. They should be encouraged to create diagrams and to represent data and observations with plots and tables, as well as with written text, in these journals. They should also begin to produce reports or posters that present their work to others. As students begin to read and write more texts, the particular genres of scientific text—a report of an investigation, an explanation with supporting argumentation, an experimental procedure—will need to be introduced and their purpose explored. Furthermore, students should have opportunities to engage in discussion about observations and explanations and to make oral presentations of their results and conclusions as well as to engage in appropriate discourse with other students by asking questions and discussing issues raised in such presentations. Because the spoken language of such discussions and presentations is as far from their everyday language as scientific text is from a novel, the development both of written and spoken scientific explanation/argumentation needs to proceed in parallel.

In high school, these practices should be further developed by providing students with more complex texts and a wider range of text materials, such as technical reports or scientific literature on the Internet. Moreover, students need opportunities to read and discuss general media reports with a critical eye and to read appropriate samples of adapted primary literature [40] to begin seeing how science is communicated by science practitioners.

In engineering, students likewise need opportunities to communicate ideas using appropriate combinations of sketches, models, and language. They should also create drawings to test concepts and communicate detailed plans; explain and critique models of various sorts, including scale models and prototypes; and present the results of simulations, not only regarding the planning and development stages but also to make compelling presentations of their ultimate solutions.